Expression of biomineralization-related ion transport genes in Emiliania huxleyi.

نویسندگان

  • Luke Mackinder
  • Glen Wheeler
  • Declan Schroeder
  • Peter von Dassow
  • Ulf Riebesell
  • Colin Brownlee
چکیده

Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta).

Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and cocc...

متن کامل

Suppressive subtractive hybridization of and differences in gene expression content of calcifying and noncalcifying cultures of Emiliania huxleyi strain 1516.

The marine coccolithophorid Emiliania huxleyi is a cosmopolitan alga intensely studied in relation to global carbon cycling, biogeochemistry, marine ecology, and biomineralization processes. The biomineralization capabilities of coccolithophorids have attracted the attention of scientists interested in exploiting this ability for the development of materials science and biomedical and biotechno...

متن کامل

Expressed sequence tag profiles from calcifying and non-calcifying cultures of Emiliania huxleyi

Expressed Sequence Tag (EST) analysis is a powerful means for evaluating gene expression and discovering novel genes. The method is relatively simple and particularly important for species where knowledge of the genome is unavailable or limited. In this study, we compare EST profiles of Emiliania huxleyi cultures grown under conditions that promote biomineralization and coccolithogenesis (F/50 ...

متن کامل

Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.

Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emi...

متن کامل

Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental microbiology

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 2011